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Abstract

A primary goal for artificial nose (eNose) technology is to report perceptual qualities of novel odors. Currently, however,
eNoses primarily detect and discriminate between odorants they previously ‘‘learned’’. We tuned an eNose to human odor
pleasantness estimates. We then used the eNose to predict the pleasantness of novel odorants, and tested these predictions
in naı̈ve subjects who had not participated in the tuning procedure. We found that our apparatus generated odorant
pleasantness ratings with above 80% similarity to average human ratings, and with above 90% accuracy at discriminating
between categorically pleasant or unpleasant odorants. Similar results were obtained in two cultures, native Israeli and
native Ethiopian, without retuning of the apparatus. These findings suggest that unlike in vision and audition, in olfaction
there is a systematic predictable link between stimulus structure and stimulus pleasantness. This goes in contrast to the
popular notion that odorant pleasantness is completely subjective, and may provide a new method for odor screening and
environmental monitoring, as well as a critical building block for digital transmission of smell.

Citation: Haddad R, Medhanie A, Roth Y, Harel D, Sobel N (2010) Predicting Odor Pleasantness with an Electronic Nose. PLoS Comput Biol 6(4): e1000740.
doi:10.1371/journal.pcbi.1000740
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Introduction

Dravnieks envisioned an artificial (or electronic) nose as ‘‘an

instrument that would inspect samples of odorous air and report

the intensity and quality of an odor without the intervention of a

human nose’’ [1]. Although eNoses have since been developed

[2–10], and serve in tasks of odor detection and discrimination

[7,11–13], they are rarely used for reporting odor quality.

The main component of an eNose is an array of non-specific

chemical sensors. An odor analyte stimulates many of the sensors

in the array and elicits a characteristic response pattern. The

sensors inside eNoses can be made of a variety of technologies, but

in all cases a certain physical property is measured and a set of

signals is generated. The stages of the recognition process are

similar to those of biological olfaction, where a sensor type

responds to more than one odorant and one odorant type activates

more than one sensor. Together, the set of activated sensors and

their signals characterize the odor (sometimes refered as an odor

fingerprint). Thus, an important difference between eNoses and

analyte detectors such as gas chromatographs, is that whereas the

latter are aimed at identifying the components that contribute to

an odor, eNoses can be used to identify, as a whole, the mixture of

components that together form an odor.

Despite the promise of an artificial system that may substitute

for olfaction, few efforts have been made to use eNoses in tasks

that go beyond detection and discrimination. A notable exception

are the efforts to develop eNoses for medical diagnosis (reviewed in

[14] and [15]). In such efforts eNoses were used to identify the

disease as a whole, rather than particular analytes that relate to it.

In a previous effort from our lab, we used an eNose to predict the

receptive range of olfactory receptor neurons [16], suggesting that

an eNose can capture the odor attributes relevant to biological

receptors. Here we set out to ask whether eNose measurements

can similarly be linked to olfactory perception. This effort,

however, may be more complicated than linking eNose output

to receptor response [16], because perception is governed not only

by stimulus structure [17], but also by higher-order mechanisms

such as experience and learning [18].

eNose output has been linked to some aspects of perception

such as odor intensity [19], and discreet perceptual odor features

such as minty and floral [20]. An alternative approach we explore

here is to focus on perceptual axes. Several lines of evidence

suggest that the primary perceptual axis of human olfaction is

odorant pleasantness [17,21–27]. Furthermore, psychophysical

evidence suggested that odorant pleasantness is reflected in part in

the physicochemical structure of odorant molecules [17]. With this

link in mind, we set out to test the hypothesis that an eNose can be

tuned to the pleasantness scale, and then used to predict the

pleasantness of novel odors.

Results

eNose training
We first measured 76 odorants (Supporting Table S1) with a

MOSES II eNose. Each odorant was measured on average six

times at the same concentration (1ml of pure odorant), providing

424 samples overall. The MOSES II eNose uses 16 different

sensors. For each odorant, we extracted 120 features out of the 16

signals (see Methods). Of the 424 samples, 46 signals failed to

classify to any of the six repetitions and were removed from further

analysis (these failures are the result of the MOSES II device

instability). Thus, the eNose measurements resulted in a matrix of

3786120 (424-32 = 378). To prevent excessive influence of one

sensor over the others, and to minimize the influence of differences
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in odorant vapor concentration that can vary despite equal liquid

concentration [28], we normalized the columns and rows of this

matrix. We then asked human subjects (14–20 per odorant) to rate

the pleasantness of each odorant stimuli twice using a visual-

analogue scale (VAS) (here the odorants were first individually

diluted to create iso-intense perception). Using a training set and

test set scheme, we trained a neural network algorithm to predict

the median pleasantness of the test set. For a test set of 25

odorants, the median correlation between the eNose prediction

and the human rating was 0.46 (average P,0.001, and P,0.05 in

100% of the 20 runs; Figure 1A).

The eNose generated human-like odorant pleasantness
ratings

Encouraged by our ability to use an eNose to predict the

pleasantness of odorants within the training set (P,0.05 in 100%

of the 20 runs), we set out to test its performance with novel

odorants, i.e., odorants that were not available during the

algorithm development. We used the eNose to measure 22

essential oil odorant mixtures made of unknown components

(Supporting Table S1 - essential oils). We measured these oils using

the same parameters as in the learning phase, and used the same

previously developed algorithm to predict the pleasantness of these

odorant mixtures. We then asked 14 human participants to rate

twice the pleasantness of these odorants. The average correlation

of 30 runs between the machine prediction ratings and the

human’s median ratings was r = 0.6460.02 (P,0.0001 in all 30

runs; Figure 2A). We then calculated the correlation between each

human’s ratings and the median human rating. The correlation

was 0.7260.1, thus the machine-human correlation was 88%

(0.64/0.72*100 = 88) of the human to human correlation.

Although these odorants were novel, some of the participants in

this study had participated in the original model-building study as

well. To address the possibility of any bias introduced by this, we

repeated the study again with 17 new participants, and obtained a

similar correlation of r = 0.5960.03, P,0.0001), i.e., a machine-

human correlation that was 82% of the human to human

correlation.

To further test the robustness of our findings, we conducted a

third test of our apparatus, using yet another set of 21 novel neat

odorants (Supporting Table S1 - novel odorants experiment) and a

group of 18 new participants. In this case, the human to human

group average correlation was 0.5560.18, and the machine-

human correlation was r = 0.4560.02 (P,0.0001 in all 10 runs;

Figure 3A). In other words, the machine-human correlation was

again 82% of the human to human correlation. We conclude that

the eNose generated human-like odor pleasantness ratings.

Up to this point, we considered a continuous scale of odorant

pleasantness. Naturally, the correlation between individual human

subjects, as well as between human subjects and machine, was

lower for ambiguous or intermediately rated odorants. Therefore,

we now set out to ask how the eNose would perform if we

restricted our analysis to the categorically pleasant and unpleasant

odors.

We conducted a classification analysis after removing odorants

with intermediate pleasantness scores (odorants with pleasantness

rating ranging from 10 to 20 on the 30 point scale). We classified

odorants as pleasant if their predicted pleasantness value was

above zero, and unpleasant otherwise. Strikingly, the eNose

discriminated between the two odor groups with 99% accuracy

(Figure 1B, blue line and Figure 2B). We repeated this analysis on

the second set of 21 odorants and 18 participants, and obtained a

discrimination success rate of 89% (Figure 1B, red line and

Figure 3B). Considering the known relation between odor intensity

and odor pleasantness [29–31], it is noteworthy that this

categorical discrimination of very pleasant from very unpleasant

odorants could not have depended on the magnitude of the eNose

response alone. This is because the analysis was conducted using

the normalized eNose values, and perceptually iso-intense

odorants (there was no significant correlation between odor

intensity and pleasantness in the two test experiments: P = 0.51

and P = 0.08; |r|,0.35 in both). To reiterate: the odorants were

diluted to an equated perceived intensity before their pleasantness

was rated by humans. Moreover, examination of the raw eNose

response suggested that odorant pleasantness was not a reflection

of eNose response magnitude even in the pre-normalized state

(Figure 4). We conclude that our apparatus discriminated pleasant

odorants from unpleasant odorants, and that this prediction power

was not based on odorant intensity.

Cross-cultural validation
A portion of human olfactory perception is modified through

culture [32,33], context [34], and learning [18]. Although the

extent of this portion remains unclear, this nevertheless raises the

possibility that the performance of our apparatus was culture-

specific. To address this, we set out to test the performance of our

apparatus in a group of recent immigrants to Israel from rural

Ethiopia. The native Ethiopian participants were adults (mean

age = 27) who had arrived in Israel on average 2.360.8 years

before testing. Because the significant assimilation facing these

immigrants in their passage from rural Ethiopia to modern Israel

entails a long-term process, this group was all still living together as

an independent community in an Israeli Absorption Center where

we conducted the experiment. Ethiopian scent-culture is unique in

many ways [35], and therefore these participants provided an ideal

test for the cultural dependence of our apparatus. Critically, we

tested our apparatus with these participants without re-learning or

re-calculating any of the apparatus parameters.

Interestingly, despite co-author AM’s fluent Amharic, we

encountered difficulty in conveying the notion of a visual-analogue

rating scale to the native Ethiopian participants. That is, the native

Ethiopian participants tended to rate odors at the extremes of the

Author Summary

Electronic noses (eNoses) are devices aimed at mimicking
animal noses. Typically, these devices contain a set of
sensors that generate a pattern representing an odor.
Application of eNoses entails first ‘‘training’’ the eNose to a
particular odor, and once the eNose has ‘‘learned’’, it can
then be used to detect and identify this odor. Using this
approach, eNoses have been tested in applications
ranging from disease diagnosis to space-ship interior
environmental monitoring. However, in contrast to animal
noses, eNoses have not been used to generate information
on novel odors they hadn’t learned. Here, rather than train
an eNose on particular odorants, we trained an eNose to
the perceptual axis of odorant pleasantness. We found that
this eNose was then able to generalize and rate the
pleasantness of novel odors it never smelled before, and
that these ratings were about 80% similar to those of naı̈ve
human raters who had not participated in the eNose
training phase. Furthermore, the results replicated across
cultures without retraining of the device. This result
contrasts the popular notion that odorant pleasantness is
completely subjective, and may allow for numerous
applications, such as an environmental monitor that would
warn of malodor regardless of its source.
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scale, and made lesser use of the middle range. This was made

evident in the standard deviation of the VAS scale values. Whereas

the average standard deviation of the mean across the same

odorants in the native Israeli participants was 6.161.5, the

average standard deviation of the mean in the native Ethiopian

participants was 861.5 (T(21) = 5.4, p,0.00002).

The correlation in pleasantness ratings between native

Ethiopians and native Israelis was r = 0.75 (p = 0.00004).

Although across all odors the median pleasantness assigned by

native Ethiopians (14.966.5) was not significantly different from

the native Israelis (16.766.6) (t(21) = 1.8, p = 0.08), when looking

at each odorant separately, this group was significantly different

from the native Israelis in its pleasantness rating of 7 odorants, 2

of which were rated as significantly more pleasant by native

Ethiopians, and 5 of which were rated as significantly less

pleasant (Figure 5A). Finally, there was no correlation between

the time since arrival in Israel and similarity in rating between the

native Ethiopian immigrants and native Israelis (r = 20.17,

p = 0.82), suggesting that the native Ethiopian participants

remained a homogenous group from the perspective of our

question.

The average correlation between the machine prediction ratings

and the native Ethiopian’s median ratings was r = 0.5260.01

(P,0.001) (Figure 5B). This correlation was not significantly

different from the correlation previously obtained in native Israelis

(Fisher z = .69, p = 0.49). Furthermore, the correlation between

each native Ethiopian’s ratings and the median native Ethiopian

rating was 0.6060.2, thus the machine-human correlation was

86% (0.52/0.60*100 = 86) of the human-to-human correlation in

the native Ethiopian population. In other words, the eNose

performed equally well across cultures.

Finally, because of the standard deviation in VAS scale usage by

the native Ethiopian participants, a classification analysis of

extremely pleasant versus extremely unpleasant odorants similar

to that conducted in the native Israelis is less informative in this

case. Put simply, these participants rated nearly all odorants as

extremely pleasant or extremely unpleasant, rendering a classifi-

cation analysis similar to a simple correlation analysis. Neverthe-

less, we conducted a classification analysis as well, and the eNose

discriminated between the two odor groups with 69% accuracy

(p,0.0001).

Because the native Ethiopians and native Israelis significantly

differed in their pleasantness ratings for only 7 odorants, this is too

small a subgroup for independent statistical analysis. However, a

descriptive observation of this subset of odorants remains

informative in that for several of the odorants with significant

differences, the eNose prediction was in fact closer to the estimates

of the native Ethiopians than to the estimates of the native Israelis

(e.g., odorants #6,18 and #19 in Figure 5A). This suggests that

although the eNose was initially tuned using an independent group

of native Israelis, it nevertheless captured a culture-independent

aspect of molecular structure that predicts pleasantness.

eNose algorithm power analysis
To test the dependence of our algorithm on the size of the

training set, we repeated the leave-group-out test while augment-

ing the training set with the essential oils data (Figure 1, dashed

blue line). As can be seen in Figure 1, when the training set was

larger the prediction accuracy improved. To quantify this

relationship, we asked what was the relation between the training

set size and the prediction accuracy, or in other words, how many

odorants should we present the eNose before we can start

predicting? As can be seen in Figure 1C (Blue line) the prediction

obtained significance with only 30 samples and saturated with 60–

70 samples. Based on this analysis we suggest that around 50

samples are required to predict odor pleasantness with reasonable

accuracy using this eNose setup.

To farther test the dependence of our algorithm on the identity

of odorants in the training set, we repeated the tests for each of the

two novel odorant experiments while augmenting the training data

with the other odorant set. The results remained similar: r = 0.56

(P,0.0001) and 100% classification rate in the essential oils

experiment and r = 0.49 (P,0.0001) and 88% classification rate in

the neat odorants experiment (when removing odorants ranging

from 10 to 20 pleasantness ratings). In other words, the prediction

was not a result of using a specific training set under specific

training parameters.

To further probe the statistical robustness of the results, we

scrambled our pleasantness data in a pseudorandom fashion 100

times and repeated our prediction analysis. The average prediction

rates dropped to r = 0.08, P.0.23. In other words, the predictions

obtained were not due to some internal structure of the data but

rather reflected the ability of the algorithm to predict odor

pleasantness.

Finally, to ask whether our results were significantly impacted

by our outlier removal criteria for eNose measurements, we

repeated the correlational analysis using all the data with no

exclusions. This resulted in a minimal reduction in correlation

between eNose and human pleasantness rating from r = .64 to

r = .62, and this correlation remained highly significant

(p,0.0004). We also repeated the classification analysis with

inclusion of outliers, and classification accuracy remained the same

(99%). We conclude that our results were not significantly

influenced by outlier removal.

Discussion

A face can be photographed, digitized and transmitted.

Whereas software at the receiving end may be able to rate its

beauty in the eyes of previously characterized observers [36], it

would not be able to tell us whether a person who’s personal

preferences were not previously characterized would find beauty

in a novel face not part of the learning set. Furthermore, no

software can tell us whether a human would like a novel image

containing more than faces alone.

Figure 1. Predicting odor pleasantness with an eNose. A. Blue line: correlation values when using different numbers of odorants as test
groups and the standard error. The total number of odorants used in this analysis was 76. The numbers in the abscissa are the number of odorants
used as a test set. For each point in the graph, we randomly selected odorants and removed them from the training set. We then trained the eNose
using the remaining odorants. We repeated this process 20 times for each group size. The red line marks the percent of times the algorithm obtained
P,0.05. The green line shows the average P value. Dashed lines show the same analysis but with an initial training set of 98 odorants (the 76 training
set plus the 22 essential oils, see text). B. The classification success rate as a function of the odors removed from the test set. Odor rates ranged from
0 to 30. We tested the classification rate when we did not remove any odors (None) and when removed an increasing number of odors. For example,
14–16 represent a test in which we did not consider odors with pleasantness ratings ranging from 14 to 16 (e.g. 1 point below and 1 point above the
average ratings). Blue line: the essential oils experiment. Red line the second 21 odorants experiment. C. Power analysis. Blue: The prediction rate
(correlation value) versus the number of odorants used in the training set. Red: the ratio of the number of times the P value was not significant
(P.0.05). Green: The mean P value.
doi:10.1371/journal.pcbi.1000740.g001
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Similarly, a musical peace can be recorded, digitized and

transmitted. Whereas software at the receiving end may be able to

rate the appeal of previously characterized music for novel

listeners [37], or the preferences of previously characterized

listeners [38] for novel music, it would not be able to tell us

whether a person who’s personal preferences were not previously

characterized would like novel music had they heard it.

Furthermore, no software can tell us whether a human would

like an auditory recording containing more than music alone.

Here, we eNosed, digitized, and transmitted to receiving

software, the smell-print of novel odorants, and in contrast to

vision and audition, could predict their pleasantness with accuracy

similar to that of a novel smeller. In other words, we could predict

whether a person who we never tested before would like the

Figure 2. Predicting pleasantness of novel odorants: Essential oils. A. The correlation between the eNose pleasantness prediction values of
22 odorant mixtures (essential oils) and the values obtained from human participants. Each dot represents an eNose measurement (many dots
overlay) B. The result of the classification algorithm when removing all odors with medium pleasantness ratings (below and above 1/3 and 2/3 of the
pleasantness scale respectively).
doi:10.1371/journal.pcbi.1000740.g002
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odorant, and this prediction was consistent across Israeli and

Ethiopian cultural backgrounds.

We argue that this difference was not a reflection of better

hardware (in fact, an eNose is less precise than a modern camera

or sound recorder), or better algorithms, but rather a reflection of

a fundamental biological property of the sense of smell. These

findings imply that unlike in vision and audition, in olfaction

pleasantness is written into the molecular properties of the stimulus

[17], and is thus better-captured by a machine.

It is tempting to speculate as to the specific molecular aspects

that our apparatus was most sensitive to in its determination of

pleasantness. For example, careful review of Supporting Table S1

reveals that many low pleasantness odorants were either carboxylic

acids or amines, suggesting a functional group specificity.

Figure 3. Predicting pleasantness of novel odorants: Neat odorants. A. The correlation between the eNose pleasantness prediction values of
21 odorants and the values obtained from human participants. Each dot represents an eNose measurement (many dots overlay) B. The result of the
classification algorithm when removing all odorants with medium pleasantness ratings (below and above 1/3 and 2/3 of the pleasantness scale
respectively).
doi:10.1371/journal.pcbi.1000740.g003
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However, other unpleasant odorants, e.g., cyclohexanol, belonged

to different functional groups. Previously, we have described a

physicochemical odorant axis that corresponds to odorant

pleasantness (PC1 of physicochemical structure in Khan et al.,

2007). If forced to choose a single verbal label that best describes

this axis, one might choose ‘‘compactness’’, where increased

molecular compactness infers reduced odorant pleasantness (Khan

et al., 2007). We cannot yet determine, however, whether our

apparatus was transducing molecular compactness, or functional

group, or some other physicochemical aspect. That said, that the

apparatus could nevertheless predict pleasantness across cultures

further strengthens the link between odorant pleasantness and

odorant structure.

This finding of hard-wired odorant pleasantness is in contrast to

the popular notion that odorant pleasantness is both subjective and

learned. We argue that in this respect olfactory pleasantness can be

likened to visual color. Most would agree that color is hard-wired

to wavelength within a predictable framework. That said, color

perception can be influenced by culture [39], context [40], as well

as by learning and memory [41]. All this does not detract from the

hard-wire link between perceived color and wavelength. Similarly,

we argue that olfactory pleasantness is hard-wired to molecular

structure. That this link is modified through culture [32,33],

context [34], and learning [18], does not preclude the initial hard-

wire aspects of this link, and it is this link that we have captured.

Indeed, it is thanks to such hard-wiring that rodents bred for

generations in predator-free laboratories are nevertheless averse to

the smell of predators [42], human new-borns with no exposure to

culture or learning are nevertheless averse to unpleasant odorants

[22,43], and that when tested out of context, odorant pleasantness

is relatively constant across cultures as revealed here. To stress this

point, we predict that if our odorants were presented to subjects

Figure 4. Raw eNose signal amplitude did not reflect pleasantness. Four typical odorant eNose signals of both the QMB sensor module
(upper panels) and MOX sensor modules (lower panels). Each line shows the dynamic response of one sensor. Note that both pleasant and
unpleasant odorants generated both strong and weak responses. A and B. An example of two very pleasant odorants. C and D An example of two
very unpleasant odorants.
doi:10.1371/journal.pcbi.1000740.g004
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within context, e.g., in foods, than the native Israeli and native

Ethiopian participants may have then diverged in their pleasant-

ness ratings. For example, peppermint may be rated as a pleasant

smelling food in only one of two cultures. However, both cultures

may then find peppermint equally pleasant when presented out of

context in a jar. Indeed, many may wonder how the French can

like the smell of their cheese. However, it is not that the French

think the smell is pleasant per se, they merely think it is a sign of

good cheese. To prove the point: the French don’t make cheese

smelling perfume! In other words, culture influences olfactory

hedonics mostly in particular contexts. When out of context, odor

pleasantness is less culturally variable, and we argue that it is this

context-free component that was captured by our apparatus.

Although our results supported our hypothesis, we would like to

clearly state their limitations. First, this manuscript used a rather

basic commercially available eNose, and more modern eNose

Figure 5. Cross-cultural validation. A. Odorant-specific pleasantness ratings for native Ethiopians (blue), native Israelis (brown), and eNose (pink).
The blue stars on the upper x axis denote the 7 odorants where native Ethiopians and native Israelis significantly differed in their pleasantness ratings.
Note that for odors #6 #18 and #19 the pink line (eNose) is in fact closer to the native Ethiopians than to the native Israelis even though the eNose
was tuned on a separate group of native Israelis. B. The correlation between the eNose pleasantness prediction values of 22 odorant mixtures
(essential oils) and the values obtained from native Ethiopians. Each dot represents an eNose measurement (many dots overlay). Comparing Figure 2a
to 5b reveals that native Israeli participants rated more at the middle of the VAS scale and native Ethiopians rated more at the scale extremes.
doi:10.1371/journal.pcbi.1000740.g005
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technologies may have performed even better. Thus, here we

provided proof-of-concept that an eNose can be tuned to a

perceptual axis. Beyond proof-of-concept, we do not claim that

this iteration represents the best possible implementation of this

concept. Second, odorant pleasantness is related to odorant

concentration [29–31]. Here we negated this source of variance by

using equal concentrations across odorants for the eNose

measurements, and equal perceived intensities across raters for

the human perception measurements. A better algorithm,

however, should account for concentration-dependent shifts in

pleasantness. Second, we should note that although our training

set generated a statistically significant and robust prediction

(average P,0.001), the extent of this correlation was not

overwhelming (r = 0.45). In fact, the correlations obtained in the

later tests with novel odorants and raters were stronger than those

of the training set. This reflected our general approach of caution

from over-optimizing at training. Specifically, we did not preselect

the training odorants to evenly range hedonic space, and we did

not preselect for optimal or ‘‘professional’’ human subjects at

training. Doing so may have allowed us to generate even stronger

predictions than those obtained here. Indeed, when we increased

the training set size (Figure 1A dashed line) the correlation value

increased substantially (r = 0.56, P,0.0001). Despite these limita-

tions, our suggested device discriminated very pleasant odorants

from very unpleasant odorants with high accuracy in both the

novel odorants and odorant mixture experiments. Thus, this

suggested apparatus can be used for fast odor screening in the

scent industry where current methods entail screening by human

panels, and may combine with eNose methods for estimating odor

intensity [19] and toxicity [44] in order to make for an automated

environmental monitor.

Finally, these results may be considered a building-block for

digital communication of smell [45]. Individual smells are often

composed of thousands of different molecules, each at a particular

ratio. Deciphering the exact composition of such odors is a

daunting prospect, and recreating these exact mixtures is currently

technically limited. In turn, the direction we point towards here is

to decipher the odorant-score along main perceptual axes of smell.

Once an odorant is characterized along several key axes, a

dispensing machine may be able to generate a stimulus defined by

the resultant axes-space, an odorant that even if not identical,

would nevertheless generate a similar percept.

Materials and Methods

Ethics statement
All subjects participated after signing informed consent to

methods approved by the Institutional Review (Helsinki)

Committee.

eNose measurements
The MOSES II eNose we used contains eight metal-oxide

(MOX) sensors and eight quartz microbalance (QMB) sensors.

MOX and QMB are two very different sensor technologies that

together capture many facets of the ligand’s nature. The 1ml

(without any dilution) samples were put in 20-ml vials in an

HP7694 headspace sampler, which heated them to 50uC and

injected the headspace content into the MOSESII with a flow rate

of 40ml/liter. These parameters maximized the number of

chemicals that elicited a strong response. To avoid the problem

of conditioning we put a blank vial before every measurement and

cleaned the system using steamed air after each run of 22 odors.

Each analyte was first introduced into the QMB chamber, whence

it flowed through to the 300uC heated MOX chamber. The

injection lasted 30 seconds, and was followed by a 20 minute

purging stage using clean air. Each chemical was measured five or

six times over a period of several days. In total, we performed 424

measurements. Each odorant was measured at the same level of

humidity and temperature. Each single measurement consisted of

sixteen time-dependent signals, corresponding to the eNose sixteen

sensors. All the raw eNose data is available for download as

Supporting Dataset S1 and on our website at http://www.

weizmann.ac.il/neurobiology/worg/materials.html.

eNose signal feature extraction methods
From each of the 16 sensor signals we extracted four

parameters. These parameters were: the signal max value and

latency to max, the time the signal reaches the half max value on

the decay part and on the rise part. In many cases the signal max

value can change considerably between measurements of the same

odorants, however, the relative height of the 8 sensors in each of

the two sensor modules was largely maintained. Thus, to capture

this behaviour we added to each odorant representation the 28

possible ratios of the 8 MOX signals and 28 ratios of the 8 QMB

signals. We thus ended up with 120 features for each odorant. To

ask whether this feature extractions method was a good

representation of the odorants, we clustered the 424 eNose

measurements we had into the 76 odorant classes and tested how

many odorants fail to cluster into their odor class. Out of the 424

measurements 85% clustered correctly. We removed the 10%

signals that failed to cluster to their class, although this did not

change the result signifantly (see text). After this signal removal, we

ended up with 3 to 6 repetitions per sample measured. We

normalized both the feature values and the odorant signature thus

removing bias to specific sensor type and odor concentration

respectively.

Human subjects
Fifty six healthy normosmic native Israeli-born subjects (31

females) ranging in age from 23 to 54 years, and 31 healthy

normosmic native Ethiopian-born subjects (24 females) ranging in

age from 20 to 37 years, participated in the study. The Ethiopian

subjects arrived in Israel between 1 and 5.5 years before testing

(mean 2.3). All subjects were paid for participation.

Odor ratings
The total of 123 odors (the 76 training odors and the 43 test

odors) were divided into groups of 20–25 odors each. This

grouping reflected the maximal time a human subject will typically

consistently rate odors (,40 minutes, with at least 30 seconds

between odorant presentations). All odors were first individually

diluted to be perceptually iso-intense. Each group of odors was

then rated by 14 to 21 subjects. Each subject ranked the

pleasantness and intensity of each odor on a visual analogue

scale. The visual scale did not contain any markings or indicators

other than the terms ‘‘very unpleasant’’ and ‘‘very pleasant’’ at

each end. For purposes of analysis, the VAS was later scored from

0 to 30 as a function of the physical location where the VAS line

was crossed (0 = very unpleasant, 30 = very pleasant). Each odor

was randomly presented twice to each subject. In total, for each

odor we had more than 30 ratings (few subjects did not want to

rate for the second time). The pleasantness of an odor was

calculated by taking the median of all subject’s ratings.

Between and within odor rating correlations
To estimate human to human ratings we calculated the Pearson

correlation between all subject pairs and calculated the average
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correlation value (n.100). To verify that our results were not

biased due to the use of visual analogue scale (VAS) we ran an

additional experiment using 21 odorants with 6 subjects using a 7

category rating experiments (categories were: The worse odor you

ever smelled, very bad, bad, Ok, good, very good, the best odor

you have ever smelled). The between human correlation was

similar (r = 0.57 in the category rating experiment versus r = 0.6 in

the VAS rating experiment; P,0.01 in both). Overall, when

considering all our humans ratings, the human to human

correlation was 0.4560.18 (P,0.01) and human to the human

group average correlation was 0.6760.12 (P,0.01). Calculating

the average correlation of each subject first rating to his second

rating we obtained r = 0.7360.15 (P,0.01).

Modeling
We used MATLAB’s implementation of a three layered feed-

forward back-propagation neural network with 5 internal neurons

and 20 epochs. Changing the number of neurons or epochs in the

range of 3–10 and 10–30, respectively, did not change the result.

The layers’ transfer functions were ‘tansig’ and ‘purelin’. The

training function was ‘traingd’. To calculate the prediction we ran

the algorithm 20 times and used the average value as our best

predictor.

Classification algorithm
To classify odors we used the same algorithm we used for the

prediction. Odors with positive predicted value were classified as

pleasant and odors with negative predicted value were classified as

unpleasant.

Supporting Information

Table S1 List of odorants used

Found at: doi:10.1371/journal.pcbi.1000740.s001 (0.04 MB XLS)

Dataset S1 Raw eNose data. The zipped directory contains all

the raw eNose data in text files, and a read-me file explaining its

structure.

Found at: doi:10.1371/journal.pcbi.1000740.s002 (14.88 MB ZIP)
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